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Abstract

In this paper a new generalized Jacobi distribution, which involves
p¥,—function is defined. Some statistical functions associated with
the probability density function, such as, the characteristic function,
the survivor function, the cumulative density function, basic moments
and the hazard rate function, have been deduced. Further some fig-
ures are drawn for the probability mass function, the cumulative den-
sity function and the hazard rate function, to show the effect of the
parameters involved. Results given by Ben Nakhi and Kalla and
Sarabia and Kalla can be derived from our formulas.
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1 Introduction

A fairly wide range of special functions can be represented in terms of the
hypergeometric and confluent hypergeometric series. Hypergeometric series
in one and more variables occur naturally in a wide variety of problems in
applied mathematics, statistic, operations research, theoretical physics, and
engineering science ([2],[7],[9],[13],[17]).

Kalla et al. [8] have used hypergeometric functions to study a unified
form of gamma-type distributions; Al-Saqabi and Kalla [1] have considered a
probability distribution involving a confluent hypergeometric function of two
variables; Ben Nakhi and Kalla [3,5] established several mixture distributions
which are obtained by mixing discrete distributions with continuous ones,
whereas a new mixture distribution associated with Fox-Wright generalized
hypergeometric function has been studied by Saxena and Kalla [12].

Statistical distributions have been used in a variety of applications, in-
cluding the field of reliability, accident proneness and entomological field
data [6].

Sarabia and Kalla [11] have studied the following probability density
function (pdf):
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On the other hand, Ben Nakhi and Kalla [4] introduce a w—Jacobi ran-
dom variable whose pdf is given by
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where
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and 3Rs(.) is the generalized w—Gauss hypergeometric function defined by
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In this paper a new generalized Jacobi distribution, which involves ,¥, —
function is defined. Some statistical functions associated with the probability
density function, such as, the characteristic function, the survivor function,
the cumulative density function, basic moments and the hazard rate func-
tion, have been deduced. Further some figures are drawn for the probability
mass function, the cumulative density function and the hazard rate function,
to show the effect of the parameters involved. Results given by Ben Nakhi
and Kalla [4] and Sarabia and Kalla [11] can be derived from our formulas.

2 Preliminaries

In this section some special functions neccesary for the development of
other sections are presented.

The Kampé de Fériet function has been generalized by Srivastava and
Daoust ([14],[16]). Their general function is defined and represented as fol-
lows:
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where (a;; oj, A;)1,, abbreviates the array of p; parameters (ai; oq, 44), .....,
(apy; apys Apy ), and so on.



The series given by (3) converges absolutely, if
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where each of the equalities holds when the variables are suitably constrained
[15].
An interesting generalization of the series , F(.) is due to Fox and Wright

[17] who studied the asymptotic expansion of the generalized hypergeometric
function defined by
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where the coeflicients Ay, ....., A, and By, ....., B, are positive real numbers
such that
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From (4) and using the definition of the beta-function we can easily
establish the following integral:
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3 Generalized Jacobi distribution

We say that X has a generalized Jacobi distribution with parameters
a,b,a;,A; (1 =1,2,...,p), b;,B; (j =1,2,...,q) if X has a probability mass
function (pmf)
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3.1 Characteristic function
The characteristic function of X, for any real ¢, is given by
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and by virtue of the result (5)
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3.2 The survivor function and the cumulative density function

The survivor function S(z) of the random variable X is given by
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Proof
By definition
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and using (6)
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From the definition (4) and the results [10, p. 797]
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and applying (3) we have the desired result.
On the other hand, the cumulative density function (c.d.f.) is defined as
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where S(x) is given by (11).
3.3 Basic moments
In this subsection we obtain the basic moments, such as, the r — th

moment, the mean and the moment generating function.
i) The r — th moment: For positive integer r
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ii) The mean
Since the mean, expected value of the random variable X, is the first
moment,

that is,
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where we have used (9).
The variance of the random variable X, denoted by ¢%, can be obtained
from (13) and (14), since that
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iii) Moment generating function
The moment generating function of X is obtained from (10) taking 7 = it,
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3.4 Hazard rate function
The failure rate called hazard rate function is defined by

h(z) = % (17)

From (6) and (11) we can write
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The results (10), (11), (13), (14), (16) and (18) are valid under the con-

ditions given in (7).

4 Particular cases

If in the results (6), (9), (10), (11), (13) and (14) we put:
)p=3,q¢=2;a1=—v,aa=v+ X\ ag=c, by =a+1, b =p; A =1,
Ay =w, A3 =1, By = w, By =1 we obtain the results given by Ben Nakhi
and Kalla in [3].
)p=3,q9g=2a1=—v,aa=v+\ ag=c¢, by =a+1, by =p; Aj = Ay
= A3 = By = By = 1 we obtain the results given by Sarabia and Kalla in
[11].
Now, we present some figures which show the effect of the parameters a and
b.
In all figures we use the following selected values:
p=3, ¢=2;
ap = 1, A1 = 25, g = 25, A2 = 2, as = 4, Ag = 35,
b1 = 08, B1 = 55, b2 = ]_2, BQ = 6,



Fig. 1, Fig. 2 and Fig. 3 show the probability mass function f(z), the cumu-
lative density function F'(x) and the hazard rate function h(x) respectively
for b = 1.5.

The curves (from left to right) correspond to the following selected values
for a: 3, 2, 1, 0.5, 0.1.

Fig. 4, Fig. 5 and Fig. 6 show the probability mass function f(z), the cumu-
lative density function F'(x) and the hazard rate function h(x) respectively
for a = 0.5.

The curves (from left to right) correspond to the following selected values
for b: 1, 2, 3, 5, 10.
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Fig. 1: The probability mass function f(z) for b = 1.5 and different values
of a.
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Fig. 2: The cumulative density function F'(z) for b = 1.5 and different
values of a.

Fig. 3: The hazard rate function h(x) for b = 1.5 and different values of a.
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Fig. 4: The probability mass function f(z) for a = 0.5 and different values
of b.
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Fig. 5: The cumulative density function F(z) for a = 0.5 and different
values of b.
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Fig. 6: The hazard rate function h(z) for a = 0.5 and different values of b.
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