
A GENERALIZED JACOBI
DISTRIBUTION

Leda Galué
Centro de Investigación de Matemática Aplicada (CIMA)

Facultad de Ingeniería. Universidad del Zulia
e-mail: lgalue@hotmail.com
Apartado de Correo 10482
Maracaibo, Venezuela

Abstract

In this paper a new generalized Jacobi distribution, which involves
p	q�function is de�ned. Some statistical functions associated with
the probability density function, such as, the characteristic function,
the survivor function, the cumulative density function, basic moments
and the hazard rate function, have been deduced. Further some �g-
ures are drawn for the probability mass function, the cumulative den-
sity function and the hazard rate function, to show the e¤ect of the
parameters involved. Results given by Ben Nakhi and Kalla and
Sarabia and Kalla can be derived from our formulas.
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1 Introduction
A fairly wide range of special functions can be represented in terms of the

hypergeometric and con�uent hypergeometric series. Hypergeometric series
in one and more variables occur naturally in a wide variety of problems in
applied mathematics, statistic, operations research, theoretical physics, and
engineering science ([2],[7],[9],[13],[17]).
Kalla et al. [8] have used hypergeometric functions to study a uni�ed

form of gamma-type distributions; Al-Saqabi and Kalla [1] have considered a
probability distribution involving a con�uent hypergeometric function of two
variables; Ben Nakhi and Kalla [3,5] established several mixture distributions
which are obtained by mixing discrete distributions with continuous ones,
whereas a new mixture distribution associated with Fox-Wright generalized
hypergeometric function has been studied by Saxena and Kalla [12].
Statistical distributions have been used in a variety of applications, in-

cluding the �eld of reliability, accident proneness and entomological �eld
data [6].
Sarabia and Kalla [11] have studied the following probability density

function (pdf):
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On the other hand, Ben Nakhi and Kalla [4] introduce a w�Jacobi ran-
dom variable whose pdf is given by

g(x) = ga;b;c;p;�w;�;� (x)

=
(1� x)a(1 + x)b

2a+b+1 B(a+ 1; b+ 1)
w

R
3

w

R2

�
��; � + �; c
�+ 1; p

; 1�x
2

�
;�1 � x � 1 (2)



where

w

R = 4

w

R3

�
��; � + �; c; a+ 1
�+ 1; p; a+ b+ 2

; 1

�
and 3

w

R2(:) is the generalized w�Gauss hypergeometric function de�ned by

3

w

R2

�
a1; a2; a3
b1; b2

; y

�
=
�(b1)

�(a2)

1X
k=0

�(a2 + wk)(a1)k(a3)k
�(b1 + wk)(b2)k

yk

k!
:

In this paper a new generalized Jacobi distribution, which involves p	q �
function is de�ned. Some statistical functions associated with the probability
density function, such as, the characteristic function, the survivor function,
the cumulative density function, basic moments and the hazard rate func-
tion, have been deduced. Further some �gures are drawn for the probability
mass function, the cumulative density function and the hazard rate function,
to show the e¤ect of the parameters involved. Results given by Ben Nakhi
and Kalla [4] and Sarabia and Kalla [11] can be derived from our formulas.

2 Preliminaries
In this section some special functions neccesary for the development of

other sections are presented.
The Kampé de Fériet function has been generalized by Srivastava and

Daoust ([14],[16]). Their general function is de�ned and represented as fol-
lows:
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where (aj;�j; Aj)1;p1 abbreviates the array of p1 parameters (a1;�1; A1); :::::;
(ap1 ;�p1 ; Ap1), and so on.



The series given by (3) converges absolutely, if
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where each of the equalities holds when the variables are suitably constrained
[15].
An interesting generalization of the series pFq(:) is due to Fox and Wright

[17] who studied the asymptotic expansion of the generalized hypergeometric
function de�ned by
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where the coe¢ cients A1; :::::; Ap and B1; :::::; Bq are positive real numbers
such that
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From (4) and using the de�nition of the beta-function we can easily
establish the following integral:Z 1
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3 Generalized Jacobi distribution
We say that X has a generalized Jacobi distribution with parameters

a; b; ai; Ai (i = 1; 2; :::; p); bj; Bj (j = 1; 2; :::; q) if X has a probability mass
function (pmf)
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3.1 Characteristic function
The characteristic function of X, for any real t; is given by
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By de�nition,
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and by virtue of the result (5)
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Substituting this result in (8) and using (4), we obtain
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where we have used (3).

3.2 The survivor function and the cumulative density function
The survivor function S(x) of the random variable X is given by
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Proof
By de�nition
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where we have made a simple variable change.
From the de�nition (4) and the results [10, p. 797]
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and applying (3) we have the desired result.
On the other hand, the cumulative density function (c.d.f.) is de�ned as
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where S(x) is given by (11).

3.3 Basic moments
In this subsection we obtain the basic moments, such as, the r � th

moment, the mean and the moment generating function.
i) The r� th moment: For positive integer r

E [Xr] = E [(1� (1�X))r]

=
rX
n=0

(�1)n
�
r
n

�
E [(1�X)n]

and from (9) we have

E [Xr] =
1

p+1	q+1

�
(a+ 1; 1); (aj; Aj)1;p;
(a+ b+ 2; 1); (bj; Bj)1;q;

1

� x



rX
n=0

(�2)n
�
r
n

�
p+1	q+1

�
(a+ n+ 1; 1); (aj; Aj)1;p;
(a+ n+ b+ 2; 1); (bj; Bj)1;q;

1

�
: (13)

ii) The mean
Since the mean, expected value of the random variable X, is the �rst

moment,
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where we have used (9).
The variance of the random variable X, denoted by �2X; can be obtained

from (13) and (14), since that
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iii) Moment generating function
The moment generating function ofX is obtained from (10) taking � = it;
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3.4 Hazard rate function
The failure rate called hazard rate function is de�ned by

h(x) =
f(x)

S(x)
: (17)

From (6) and (11) we can write
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The results (10), (11), (13), (14), (16) and (18) are valid under the con-
ditions given in (7).

4 Particular cases
If in the results (6), (9), (10), (11), (13) and (14) we put:

i) p = 3; q = 2; a1 = ��; a2 = � + �; a3 = c; b1 = �+ 1; b2 = p; A1 = 1;
A2 = w; A3 = 1; B1 = w; B2 = 1 we obtain the results given by Ben Nakhi
and Kalla in [3].
ii) p = 3; q = 2; a1 = ��; a2 = � + �; a3 = c; b1 = �+1; b2 = p; A1 = A2
= A3 = B1 = B2 = 1 we obtain the results given by Sarabia and Kalla in
[11].
Now, we present some �gures which show the e¤ect of the parameters a and
b.
In all �gures we use the following selected values:
p = 3; q = 2;
a1 = 1; A1 = 2:5; a2 = 2:5; A2 = 2; a3 = 4; A3 = 3:5;
b1 = 0:8; B1 = 5:5; b2 = 1:2; B2 = 6;



Fig. 1, Fig. 2 and Fig. 3 show the probability mass function f(x); the cumu-
lative density function F (x) and the hazard rate function h(x) respectively
for b = 1:5.
The curves (from left to right) correspond to the following selected values
for a: 3; 2; 1; 0:5; 0:1:

Fig. 4, Fig. 5 and Fig. 6 show the probability mass function f(x); the cumu-
lative density function F (x) and the hazard rate function h(x) respectively
for a = 0:5.
The curves (from left to right) correspond to the following selected values
for b: 1; 2; 3; 5; 10:
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Fig. 1: The probability mass function f(x) for b = 1:5 and di¤erent values
of a:
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Fig. 2: The cumulative density function F (x) for b = 1:5 and di¤erent
values of a:
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Fig. 3: The hazard rate function h(x) for b = 1:5 and di¤erent values of a:
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Fig. 4: The probability mass function f(x) for a = 0:5 and di¤erent values
of b:
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Fig. 5: The cumulative density function F (x) for a = 0:5 and di¤erent
values of b:
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Fig. 6: The hazard rate function h(x) for a = 0:5 and di¤erent values of b:
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